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Abstract. We present the results of systematical variational investigations of the ground and
2p− states of D0 centre in a rectangular quantum wire. The objective was to find the general
trends for the donor binding energy and the dipole optical transition energy with changing
transversal dimensions of the wire and the external magnetic field perpendicular to the wire.
Simple Gaussian-like trial envelope functions and variable gauge of the vector potential were
used in variational calculations. Besides, we investigated a donor impurity in quantum wires
with parabolic confinements and the correspondence of such wires and rectangular quantum
wires in the case of donor impurities.

1. Introduction

There is a great deal of interest in quantum wires [1–12], i.e. quasi-one-dimensional systems,
whose physical properties have quite new aspects in comparison to those observed in
bulk materials and two-dimensional systems. The visible progress in crystal growth and
fabrication techniques to obtain such systems has inspired numerous theoretical studies of
optical and transport properties, electronic structure and excitonic and impurity levels. In
the case of an impurity states the effects of several factors on impurity spectra have been
investigated: the height of the potential barriers, the shape of the wire’s cross section, the
transversal dimensions of the wire, the position of the impurity centre with respect to the
axis of the wire and the external magnetic field acting along the wire or in the direction
perpendicular to it [13–24]. Besides, problems related to the boundary conditions, the
effect of image potential on the impurity states and polarizabilities of shallow donors were
considered [25–28]. Most of the calculations were performed for a hydrogenic impurity
in the effective-mass approximation, within the variational approach, so the theoretical
investigations of the impurity states in quantum wires cover quite similar subjects as in
the case of quantum wells but as different authors concentrated on different aspects of
the problem the results are rather scattered and the general trends are not easy to trace.
Though impurities in quantum wires were observed recently in experiment [10, 11, 29] very
sophisticated calculations of the fine details of the impurity spectra with complicated trial
wavefunctions requiring a lot of computational effort (more than for the similar problem
in the case of an impurity in a quantum well) seem to be premature. At present, the most
profitable and useful studies for the experimental search for the signature of impurities
in quantum wires seem to be rather systematic theoretical studies of the behaviour of the
impurity states with the changes of principal wire parameters. This goal can be achieved with
the use of rather simple variational trial functions requiring a minor computational effort.

0953-8984/96/4910521+11$19.50c© 1996 IOP Publishing Ltd 10521



10522 T Szwacka

Our experience with variational calculations of the D0 spectra in bulk semiconductors and
quantum wells [30, 31] suggests that very simple Gaussian bases give quite accurate results
in the case of moderate and strong magnetic fields.

The purpose of the present paper is to investigate systematically the changes of the
ground and 2p− states of a D0 centre placed at the axis of a rectangular wire with
changing transversal dimensions of the wire and the external magnetic field in the direction
perpendicular to one of the sides of the rectangle. It is easy to see that such an external
magnetic field differentiates between the effects of the two well potentials forming a quantum
wire. The confinement effect of one of the wells acts together with the confining effect of
the magnetic field. One may expect however that in limiting cases of the well widths,l⊥,
and the magnetic fields the results will be mostly determined by one of the two factors. It
is also rather natural to expect the essential effect of the change of the width of the other
well, l‖ (which is in the direction of the magnetic field), to consist primarily in the uniform
vertical shift of the curves representing the dependence of the binding energy,ED (or 1s–
2p− transition energy,1E), on a magnetic field, for fixedl⊥. An impurity in a quantum
wire in a magnetic field represents a very complex system, so that the verification of these
qualitative expectations may only come from numerical results.

We shall investigate also the ground and 2p− states of a D0 centre in a quantum wire
with parabolic confinements. Correspondence between such wires and rectangular quantum
wires is expected.

In section 2 we present the calculated binding energies of a donor impurity and in
section 3 we concentrate on the energy of the dipole optical transition expected for infrared
radiation with the electric field parallel to the wire.

2. The ground state of a donor impurity in the quantum well wire

Let us take the axis of the quantum wire along thex-direction and the magnetic fieldB
perpendicular to the wire in thez-direction. Then the wire cross section will be in theyz
plane with the dimensionsl⊥ along they axis andl‖ along the magnetic field. This wire
structure can be obtained as a superposition of two square-well potentials which can be
written in the form

V1(y) =
{

0 for |y| < l⊥/2
V0 for |y| > l⊥/2

V2(z) =
{

0 for |z| < l‖/2
V0 for |z| > l‖/2

(1)

whereV0 denotes the barrier height (for GaAs well sandwiched by Ga1−xAl xAs barriers,
V0 = 0.65×1.247x eV [32]). We shall consider the case when the donor impurity is placed
on the axis of the wire. The magnetic fieldB in the z-direction can be described by the
vector potential in the form

A = [−αBy, (1 − α)Bx, 0] (2)

where 06 α 6 1 will play the role of one of the variational parameters involved in the
problem. It will be shown that the presence of the parameterα in (2) can be quite important
when rather simple variational trial wavefunctions are used. It is known [33] that if the
variational wavefunction is not very flexible (involves only few variational parameters) the
gauge of the vector potential plays an important role.

The dimensionless effective mass Hamiltonian for our system, with the vector potential
described by (2), has the form

H = H0 − 2/r (3)
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whereH0 represents the Hamiltonian of the free electron in the quantum wire in the presence
of a magnetic field

H0 = −∇2 + (2/i)γ [(1 − α)x(∂/∂y)− αy(∂/∂x)] + (1 − α)2γ 2x2 + α2γ 2y2

+V1(y)+ V2(z) (4)

whereV1(y) and V2(z) are given by (1). The energy is measured in effective Rydbergs
Ryd∗ = m∗e4/2h̄2ε2, and the effective Bohr radiusa∗

B = h̄2ε/m∗e2 is the unit of the
distance (−e andm∗ are the charge and effective mass of an electron, respectively, andε

the static dielectric constant). The parameterγ = h̄ωc/2 Ryd∗ is a measure of the magnetic
field (h̄ωc being the cyclotron energy).

We propose the following variational trial wavefunction for the electron bound to the
impurity [described by the Hamiltonian (3)]

9 = N exp(−λx2 − µy2 − νz2)f1(y)f2(z). (5)

Here λ, µ, andν are variational parameters for the Gaussian-like envelope wavefunction
while f1(y) andf2(z) are the ground-state eigenfunctions of the square-well potentialsV1(y)

andV2(z), respectively, andN is the normalization constant. In the case of a free electron
when the magnetic field is absent there exists the exact solution for the lowest-energy 1D
subband for a free electron:

ψ0kx =
(

1/
√
Lx

)
exp(ikxx)f1(y)f2(z) (6)

whereLx is the length of the wire. The bottom of the subband corresponds to thekx = 0
state with the wavefunctionψ0. In the presence of the magnetic field parallel to thez-axis
and the Landau gauge withα = 1 the eigenfunction of the lowest-energy state has the
product form (N ′ being the normalization constant)

ψ = N ′g1(y)f2(z) (7)

but g1(y) cannot be found analytically. We use forg1(y) the trial function of the form

g1(y) = exp(−µ′y2)f1(y). (7a)

For a general gauge withα 6= 1 we used the free electron trial wavefunction

ψ = N ′ exp(−λ′x2 − µ′y2)f1(y)f2(z) (8)

and we have proved that for a free electron the Landau gauge withα = 1 is the preferential
one.

The binding energy of the donor impurity ground state is given by the difference of two
energy expectation values

EB(γ ) = 〈9|H |9〉 − 〈ψ |H0|ψ〉 for γ 6= 0 (9)

and

EB(γ = 0) = 〈9|H |9〉 − 〈ψ0|H0|ψ0〉 for γ = 0. (10)

We have the analytical expression only for the expectation value〈ψ0|H0|ψ0〉 = E1 + E2,
whereE1 andE2 are the energies of the bottoms of the lowest subbands for an electron in
the quantum well given byV1(y) andV2(z), respectively, in the absence of the magnetic
field. The other expectation values have the following expressions:

〈9|H |9〉 = 〈9|H0|9〉 − 2N2
∫ +∞

−∞
dx

∫ +∞

−∞
dy

∫ +∞

−∞
dz

f 2
1 (y)f

2
2 (z)√

x2 + y2 + z2

× exp[−2(λx2 + µy2 + νz2)] (11)
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where

〈9|H0|9〉 = E1 + E2 + λ+ (1 − α)2γ 2

4λ
− 1

2
(4µ2 + α2γ 2)

d

dµ
(ln I1(µ))

−2ν2 d

dν
(ln I2(ν)) (12)

and

N−2 = [π1/2/(2λ)1/2]I1(µ)I2(ν). (13)

I1(µ) andI2(ν) represent the following integrals

I1(µ) =
∫ +∞

−∞
dy f 2

1 (y) exp(−2µy2) (14)

I2(ν) =
∫ +∞

−∞
dz f 2

2 (z) exp(−2νz2). (15)

The energy expectation value〈ψ |H0|ψ〉 for the free electron in the presence of an external
magnetic field has the form

〈ψ |H0|ψ〉 = E1 + E2 + λ′ + (1 − α)2γ 2

4λ′ − 1

2
(4µ′2 + α2γ 2)

d

dµ′ (ln I1(µ
′)). (16)

It is an interesting fact that with the trial function given by (8) the difference between the
free electron values of the lowest energy level obtained for the Landau gauge(α = 1) and
for the symmetrical gauge(α = 0.5) is quite big. For example for the quantum wire with
l⊥ = l‖ = 1 a∗

B and for γ = 5 this difference represents about 11% of the free electron
ground state energy.

All numerical calculations reported below were performed for a given heightV0 =
34.9 Ryd∗. This corresponds to the compositionx = 0.25 in the Ga1−xAl xAs type barriers
sandwiching the GaAs wire. Even though this height seems to be quite large, the result still
differs considerably from the infinite-barrier case. For example, the difference between the
binding energies obtained forV0 = 34.9 Ryd∗ and forV0 = 119 Ryd∗ (corresponding to
the compositionx = 0.85 in the Ga1−xAl xAs type barriers) exceeds 10% (for an impurity
on the axis of the wire forγ = 0).

In figure 1 we present the calculated binding energy of a D0 centre on the axis of the
quantum wire with square cross section(l⊥ = l‖ = l) for a quite wide range of magnetic
fields. The magnetic field is perpendicular to a side of the squarel⊥. Five different cross
sections withl = 1, 1.5, 2, 3 and 4a∗

B were studied. To visualize better the general trends
the bulk binding energy for the D0 centre calculated within the same approximation is also
plotted (dotted curve). We have checked that the relative accuracy of the one-Gaussian
approximation, rather poor for the bulk case at low magnetic fields, improves considerably
in the presence of strong confinement, whatever its origin. We can see from figure 1
that with the decrease of the transversal dimensions of a square quantum wire the visible
magnetic confinement effect on the binding energy starts at higher and higher fields. The
narrower the wire, the less sensitive is the binding energy to the external magnetic field.

In figures 2 and 3 we plot the calculated binding energy of a D0 centre on the axis of a
quantum wire with rectangular cross section, for the same region of the magnetic fields as
in figure 1. In both figures the continuous curves correspond to fixed length of the sidel⊥
of the rectangle (in the direction perpendicular to the magnetic field). In figure 2 this fixed
l⊥ is equal to 1a∗

B whereas the length of the rectangle side parallel to the magnetic field
assumes subsequent valuesl‖ = 0.5, 1, 2, 4 and∞ a∗

B . In figure 3 for continuous curves
l⊥ = 2 a∗

B and for the other side we have chosen the valuesl‖ = 1, 2, 4 and∞ a∗
B . We can
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Figure 1. The binding energy of a D0 centre on the axis of a quantum wire with square cross
section(l⊥ = l‖ = l) as a function of the magnetic field, for various wires. The dotted curve
corresponds to the case of the bulk binding energy.

Figure 2. The binding energy of a D0 centre on the axis of various quantum wires with
rectangular cross section as a function of the magnetic field. The continuous curves correspond
to the fixed length of the rectangle sidel⊥ = 1 a∗

B and the broken curves correspond to the case
of fixed l‖ = 1 a∗

B .

see from figure 2 that for all continuous curves, even forl‖ = ∞, the D0 binding energy
depends only weakly on the magnetic field. This dependence becomes more pronounced
for the bigger value ofl⊥ = 2 a∗

B used in figure 3. In both cases (figure 2 and figure 3)
the magnetic field dependence of the binding energy seems to be independent ofl‖. The
essential effect of the change ofl‖ for fixed l⊥ consists in the uniform vertical shift of the
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Figure 3. The binding energy of a D0 centre on the axis of various quantum wires with
rectangular cross section as a function of the magnetic field. The continuous curves correspond
to the fixed length of the rectangle sidel⊥ = 2 a∗

B and the broken curves correspond to the case
of fixed l‖ = 2 a∗

B .

curves. In spite of the fact that in the presence of the Coulomb potential the Schrödinger
equation does not factorize the effect ofl‖ is field independent as for a free electron.

The broken curves in figures 2 and 3 correspond to the situation when the length of the
rectangle side parallel to the magnetic field is fixed:l‖ = 1 a∗

B in figure 2 andl‖ = 2 a∗
B in

figure 3. The lengths of the other side arel⊥ = 2, 4 and∞ a∗
B for figure 2 andl⊥ = 4 and

∞ a∗
B for figure 3. We can see that for all broken curves the magnetic field effect on the

D0 binding energy is strong. Thel⊥-related confinement plays an important role only for
small (and in some cases also moderate) magnetic fields determining, for example, together
with the magnetic field the slope of the broken curves. For field high enough it becomes
dominant: the slope of the binding energy curves is determined by the magnetic field only.
All broken curves for fixedl‖ value are nearly parallel to each other or even coincide in
that region ofγ . It is interesting to note that starting from someγ value the magnetic
field perpendicular to the quantum well(l⊥ = ∞) can be more effective than the field in
quantum wires (see figure 2).

Let us propose now parabolic confinements instead of the square-well potentials given
by (1). In the directiony (perpendicular to the external magnetic field) we propose the
parabolic-shaped potential in the form

V1p(y) = η⊥y2 (17)

instead of the potentialV1(y) and in the direction of the magnetic field the parabolic potential

V2p(z) = η‖z2 (18)

instead of the potentialV2(z). The energy of the lowest free electron state in the wire with
parabolic confinements given by (17) and (18), in the presence of magnetic field in the
z-direction, has an analytical expression given by

√
η‖ +

√
η⊥ + γ 2. (19)
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The following variational trial wavefunction for the electron bound to the impurity was
proposed:

9 ′ = Np exp(−λx2 − µy2 − νz2). (20)

The numerical results of D0 binding energy obtained in this case show the existence
of correspondence between the parabolic confinement and the square-well confinement (at
least for the case of D0 binding energy). The same curves of the D0 binding energy as
a function of the magnetic field as plotted in figures 1–3 we can obtain with a proper
substitution of square-well potentials by the parabolic ones. For the square well of any
extensionl (and any height) we can find a parabolic well defined by someη so that the
binding energy of the D0 centre on the axis of the wire structure obtained as a superposition
of two square-well potentials differs by less than 1% from the D0 binding energy in the wire
obtained as a superposition of proper parabolic potentials, for the entire range of magnetic
fields we considered. Of course the same occurs when we substitute only one of the square-
well potentials by the proper parabolic one. The following correspondence between the
parameters defining the square-well potential and the parabolic potential was obtained:

Table 1.

l 1 2 4

η 50 5.5 0.45

3. The 2p–-like excited state and optical transition energies

For the electron in the 2p−-like excited state of the neutral donor we propose the following
variational wavefunction:

91 = N1(x + iβy) exp(−λ1x
2 − µ1y

2 − ν1z
2)f1(y)f2(z). (21)

Hereλ1, µ1 andν1 are variational parameters of the Gaussian-like envelope wavefunction
while f1(y) andf2(z) are the ground-state eigenfunctions of the square-well potentialsV1(y)

andV2(z) given by (1), respectively, andN1 is the normalization constant. The orthogonality
of this function to the 1s-like function (5) is guaranteed by the factor(x + iβy), whereβ
is an additional variational parameter which is supposed to vary in the region−1 6 β 6 0.
For wires with small extension in they-direction and for small magnetic fieldsβ is expected
to be rather close to zero. The bulk value,−1, for β will be achieved when the extension
of the wire in they direction is infinite or for sufficiently high magnetic field for any wire
extension in they-direction.

The expectation value〈91|H |91〉, for HamiltonianH given by expression (3), has the
form

〈91|H |91〉=〈91|H0|91〉 − 2N2
1

∫ +∞

−∞
dx

∫ +∞

−∞
dy

∫ +∞

−∞
dz (x2 + β2y2)

f 2
1 (y)f

2
2 (z)√

x2 + y2 + z2

× exp[−2(λ1x
2 + µ1y

2 + ν1z
2)] (22)

where

〈91|H0|91〉 = E1 + E2 + λ1 + (1 − α)2γ 2

4λ1
− 1

2
(4µ2

1 + α2γ 2)
d

dµ1
(lnN−2

1 (µ1, ν1))
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−2ν2
1

d

dν1
(lnN−2

1 (µ1, ν1))+N2
1
π1/2

(2λ1)1/2

×
{[

1

2
+ β2 + (1 − α)2γ 2

8λ2
1

+ (1 − α)βγ

2λ1

]
I1(µ1)I2(ν1)

−[−2β2µ1 + αβγ ]
dI1(µ1)

dµ1
I2(ν1)

}
(23)

and

N−2
1 = π1/2

(2λ1)1/2

[
1

4λ1
I1(µ1)I2(ν1)− 1

2
β2 dI1(µ1)

dµ1
I2(ν1)

]
. (24)

I1(µ1) andI2(ν1) represent integrals defined by the formulae (14) and (15). The variational
parameterα defines the gauge of the vector potential (2), as in the case of the ground state.
Its value obtained for the 2p− excited state is in general different from that obtained for the
1s state. This difference of the gauges of the vector potential must be taken into account
when calculating the transition probability between 1s and 2p− states.

The calculated energies of the dipole optical transitions from the ground to the lowest
2p−-like excited state are expressed by the formula

1E = 〈91|H |91〉 − 〈9|H |9〉. (25)

The results of transition energies as a function of magnetic field are plotted in figures 4–6.
Figure 4 gives the transition energies for the quantum wires for which the binding energies
are presented in figure 1, while figures 5 and 6 give the transition energies for the wires
whose binding energy results are presented in figures 2 and 3, respectively. The first general
observation we can make is that when the extension of the wire in the direction perpendicular
to the magnetic field,l⊥, fulfills the relation l⊥ 6 1.5 a∗

B , then for γ 6 5 the transition
energy seems to be rather weakly dependent on the magnetic field. This situation changes
for l⊥ > 2 a∗

B , but nevertheless the dependence of the transition energy on the magnetic
field in the considered range ofγ is much weaker than that of the ionization energy. This
remains true even for the bulk material (see figure 4). In figure 5 we can observe that for
the wire with a small extension in the direction perpendicular to the magnetic field the slope
of the transition energy as a function of magnetic field seems to be almost constant and
independent ofl‖. The essential effect of the change ofl‖ seems to consist in the uniform
vertical shift of the curves (see continues curves). Whenl⊥ becomes bigger the effects of
the l‖ parameter and the magnetic field in determining the slope of the curves start to play
some role for continuous curves (figure 6) and become evident for the broken curves as we
can see in figures 5 and 6. In comparison to the bulk materials and to the quantum well
structures the quantum wires offer not only much higher values of the 1s–2p− transition
energies but also greater variety of magnetic field dependences of these transition energies
with ranges of positive and negative slopes depending on the wire geometry.

In the case of a quantum wire with parabolic confinements the following variational
wavefunction orthogonal to the ground-state wavefunction (20) was proposed:

9 ′
1 = N1p(x + iβy) exp(−λ1x

2 − µ1y
2 − ν1z

2). (26)

We performed the numerical calculations of the transition energy form the ground to the
2p−-like excited state(1Ep) for wires with parabolic confinements given by the sameη

values as in the case of the D0 ground state (η = 50, 5.5, 0.45). All combinations of these
η values were considered; this meansη⊥ = 50, η‖ = 50; η⊥ = 50, η‖ = 5.5 and so on.
Comparing these results with the results for corresponding rectangular quantum wires (using
the correspondence established for the case of binding energy) we found that for rectangular
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Figure 4. The transition energy from 1s to 2p− states of a D0 centre on the axis of various
quantum wires with square cross section(l⊥ = l‖ = l) as a function of magnetic field. The
dotted curve corresponds to the case of bulk transition energy.

Figure 5. The transition energy from 1s to 2p− states of a D0 centre on the axis of various
quantum wires with rectangular cross section as a function of magnetic field. The continuous
curves correspond to the fixed length of the rectangle sidel⊥ = 1 a∗

B and the broken curves
correspond to the case of fixedl‖ = 1 a∗

B .

wires with l⊥ 6 1 a∗
B and l‖ 6 2 a∗

B the relative difference between1Ep and1E given
by (25) is less than 1% for the entire range of magnetic fields(0 6 γ 6 5). For larger
values ofl⊥ or l‖ this difference grows with the magnetic field but is still less than 3% for
γ 6 2 and less than 10% forγ 6 5 (at least forl⊥, l‖ 6 4 a∗

B , which were the values we
considered).
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Figure 6. The transition energy from 1s to 2p− states of a D0 centre on the axis of various
quantum wires with rectangular cross section as a function of magnetic field. The continuous
curves correspond to the fixed length of the rectangle sidel⊥ = 2 a∗

B and the broken curves
correspond to the case of fixedl‖ = 2 a∗

B .

Concluding, we can say that a rectangular quantum wire with rather small cross
section but for quite a large range of magnetic fields (or a wire with larger cross sections
but for small magnetic fields) can be substituted by some quantum wire with parabolic
confinements if we are interested in the D0 binding energy and the 1s–2p− transition energy.

4. Summary

We have investigated mainly the effect of the transversal dimensions of a rectangular
quantum wire on the dependence of the binding energy and the dipole optical transition
energy on an external magnetic field parallel to one side of the rectangle. The effect of
the magnetic field on the D0 binding energy can be quite big and is determined mainly by
the dimension of the quantum wire in the direction perpendicular to the magnetic field; the
dimension of the other rectangle side co-determines the magnitude of the binding energy.
When the dimension of the wire in the direction perpendicular to the magnetic field is small
enough the D0 binding energy is practically independent of the magnetic field (in the range
of magnetic fields we considered).

The dipole optical transition energy is weakly dependent on the external magnetic field
but quantum wires offer greater variety of magnetic field dependences than bulk materials
and quantum well structures.

A rectangular quantum wire can be substituted by some quantum wire with parabolic
confinements if we are interested in the D0 binding energy and the dipole optical transition
energy as a function of an external magnetic field.
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